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Supplementary Material 
For “Advancing functional connectivity research from association to causation” 
 

1. Applying the FC mechanism framework to common FC 
measures 

1.1. Pearson correlation with resting-state fMRI 
 In this section we will apply the framework to a commonly-used FC measure: Pearson 
correlation with resting-state fMRI1,2. There are some aspects of the example that will generalize to 
all uses of Pearson correlation with resting-state fMRI, while other aspects will be specific to this 
particular example dataset and analysis strategy. Notably, in this and the following two sections, we 
are only highlighting examples of how the proposed framework might be applied to specific FC 
approaches. These are not meant to be definitive, prescriptive, or exhaustive; on the contrary, an 
important aspect of this framework is that it should flexibly account for the changing landscape of 
neuroscientific methods and knowledge. 
 
Step 1: Identifying target theoretical properties 
  
 In this example, we are primarily interested in characterizing neural interactions among a 
predefined set of brain regions during resting state. For simplicity, we restrict our inferences to linear 
causal interactions, quantified as Pearson correlations. One major advantage of using Pearson 
correlations is that this measure is well understood relative to alternatives, thus improving 
confidence in understanding its strengths and weaknesses as a measure of FC theoretical targets of 
interest. As an example of a well-understood weakness of this measure, we must accept that a third 
region may be acting to modulate (or fully cause) a correlation between any two regions, since 
Pearson correlation only models time series relationships in pairs. Thus, our target inferences are 
necessarily ambiguous (Supplementary Table 1), with additional ambiguities due to the poor 
temporal resolution of fMRI, both in terms of the whole-brain volume acquisition time (TR; here 785 
ms) and the temporally-extended hemodynamic response function. We can therefore infer a causal 
interaction exists in the network, but that it is ambiguous with respect to directness and 
directionality. Moreover, while the presence of significant correlations indicates that causal edges 
exist in the network, our inference is also ambiguous with respect to which edge is causal 
(specificity). Nonetheless, the correlation-based network structure provides information that allows 
us to form probabilistic inferences about specific edges. 
 
Step 2: Identifying methodological properties 
 
 While it would be theoretically ideal to measure interactions among individual neurons, fMRI 
only allows for measurement of large neural populations. Supplementary Table 1 lists this and other 
methodological properties for this example study. Here we will use Pearson correlations to assess 
interactions between regions. One major reason for this decision is that efforts to rule out neural 
modulation from third regions (e.g., partial correlation) often lead to over-sparsification of FC graphs, 
collapsing an interaction among multiple neural units down to a single pairwise relationship (but see 
Box 2). Supplementary Table 1 also lists the key assumptions required for our inferences to be 
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valid. Describing the observational pathway can be considered part of the methodological properties 
step, since methodological properties map observations to target theoretical properties. In this case, 
we ultimately seek to link observed resting-state FC with fMRI to action potentials (APs), given that 
we are interested in inferences about causal interactions among neural populations. Note that we 
clearly acknowledge weaknesses and ambiguities in our inferences regarding causal interactions 
and APs in several locations within Supplementary Table 1. 
	 	
Step 3: Identifying confounding properties 
 
 Factors that can invalidate the target theoretical inferences due to alternative causal chains 
are listed here. There are a variety of potential confounders for fMRI, such as respiration and heart 
rate changes. These confounders become more problematic for resting-state FC analyses (relative 
to standard fMRI task activation analyses) given that FC measures typically characterize covariance 
regardless of whether it is time-locked to experimentally-manipulated events. This reduces 
experimental control, allowing confounding variables more opportunity to correlate with variables of 
theoretical interest. Supplementary Table 1 lists a variety of confounders that have been 
documented in the resting-state FC fMRI literature, along with strategies to reduce their influence on 
target inferences. Once all other sections of the table are filled out, the “Relevant inferences” section 
can be completed, concisely describing the valid inferences of interest that can be made using this 
FC method. 
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Supplementary Table 1 – Example of using standard template table summarizing a functional connectivity (FC) 
measure in terms of the framework. Many details are specific to this example, which is modeled after a particular 
study, rather than generalizing to all uses of this method. Also note that these properties can change over time as the 
field learns more about relevant underlying processes. * = Likely does not fully correct confound. 

Functional connectivity measure properties (as applied in this study) 
Pearson correlation with resting-state fMRI 

Target theoretical properties 
● Direct and/or indirect interactions (ambiguous) 
● Undirected (ambiguous) 
● Common interaction source(s) possible (ambiguous) 
● Weighted by statistical certainty of non-zero interaction (variance shared relative to total variance) 
● Linear interactions 

 
Assumptions 

● Causal interactions are due to action potentials propagated via axons influencing synaptic activity 
Methodological properties 

● Equipment: Siemens 3T Tim TRIO MRI 
● Spatial resolution: 2 mm cubic, downsampled (averaging) into functional parcels3 
● Spatial coverage: Whole-brain, 210 mm field-of-view; only cortex analyzed 
● Temporal resolution: 0.785 s, filtered through hemodynamic response (~6 s to peak) 
● Transformation to normal distribution: Fisher’s z-transform (on Pearson correlations) 
● Observation equation: Balloon-Windkessel model 
● Interaction estimate: Pearson correlation coefficient 
● Neural entity: Brain regions (via voxel averaging) 

See main text for more details 
 

Assumptions 
● Causal link to action potentials: 

Blood-oxygenation-level-dependent (BOLD) signal driven by synaptic activity (which is driven by action 
potentials); detected by effect on magnetic field 

● Homogeneity of the hemodynamic response across regions 
● Statistical assumptions for one-sample t-test at group level (inter-subject variance of Fisher’s z-

transformed Pearson correlations): normality (robust to small violations), independence, no outliers 
Confounding properties 

● Subject movement during scan influences correlations4,5 
○ Correction strategy: Scrubbing/censoring6, regression with motion parameters, CompCor7,8 

(regression with principal components of white matter, ventricle data), ICA-FIX9 
● Respiration and heart rate induces global changes in oxygenation and blood flow, influencing 

correlations10 
○ Correction strategy*: Regression with mean white matter and ventricle signals, CompCor7,8 

● Spatial autocorrelation of BOLD signal, leading to inflated local correlations 
○ Correction strategy: Use of predefined parcels/regions 

See main text for more details 
Observational pathway 

APs → synaptic activity/LFPs → HRF [CBV, Hb, CBF] → MR BOLD contrast  
Relevant inferences 

● Given a statistically significant group-level Pearson correlation between two regions’ time series, and 
to the extent that the confound correction strategies were effective:  
The two regions interact (directly or indirectly, with ambiguous directionality), and/or are similarly 
influenced by common region(s), during resting state. 
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1.2. Task-based EEG with source localization and Granger-type influence 
 
Step 1: Identifying target theoretical properties 
 

Our benchmark here is a simple visual object recognition task and a high-density (128-
channel) EEG recording, including inferior electrode placements (Supplementary Table 2). As for 
the preceding example, how well we can estimate the target theoretical properties will be limited by 
both physical limitations inherent to the forward problem and the properties of the methodological 
choices. We illustrate using a directed measure of source FC to assess the directionality of 
information/activity transfer, as well as the strength (weight) of this interaction.  

Our efforts will be limited by the nature of the EEG forward problem. Volume conduction 
mixes and spatially smears the activity of neural entities. As a consequence, inferring “real” neural 
FC among entities by simple interpolation of FC measures in so called “sensor space” is in general 
impossible. To improve inference we will estimate the activity of estimated neural entities by solving 
the inverse problem of the EEG. The method selected for this purpose is eLoreta which is based 
outputs the time series of the estimated neural entities or “sources”. By the very nature of this linear 
inverse solution, the estimated neural entities will be a spatially smooth solution, with a limited 
spatial resolution. This implies that, while source localization dramatically improves spatial resolution 
over raw sensors, this particular method produces spatially blurred estimates of the neural entities 
and therefore mixes the connectivity of the actual neural entities – a phenomenon known as 
“leakage”. Achieving super resolution would eliminate leakage but the purpose of our example is to 
show the limitations of the estimates which follow from our choices. 
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Supplementary Table 2 – Example of using standard template table to summarize a task-based EEG study. Many 
details are specific to this example. Also note that these properties can change over time as the field learns more about 
relevant underlying processes. * = Likely does not fully correct confound. 

Functional connectivity measure properties (as applied in this study) 
Task-related Granger-type influence with scalp EEG 

Target theoretical properties 
● Direct and indirect interactions (ambiguous) 
● Directed interactions 
● Weighted interactions 
● Linear interactions 

 
Assumptions 

● Causal interactions are due to action potentials propagated via axons influencing post-synaptic 
potentials that produce currents reflected as voltage differences on the scalp 

● We have a fairly accurate model of the effects of volume conduction 
Methodological properties 

● Task: Visual object recognition 
● Equipment: 128-channel active electrodes 
● Spatial resolution: Inter-sensor distance 2.7 cm; Modeled source spread 6-7 mm11 
● Spatial coverage: Whole-brain, biased by dipole orientation, amplitude, superficiality 
● Bandpass filter: 3-45 Hz 
● Temporal resolution: 1 ms 
● Observation equation: estimated with the boundary element method (BEM) from T1 MRI  
● Source localization method: eLORETA12 
● FC measure for the sources : Granger-type influence 
● Achievable estimate of neural entity: current source density with limited spatial resolution 

See main text for more details 
 

Assumptions 
● Activity of all relevant neural entities is reflected in voltage scalp measurements 
● Source current sources are spatially smooth 
● Statistical assumptions: normality, independence, absence of outliers, linearity 
● Volume conductor model and spatial smoothness allow approximate estimation of sources 

Confounding properties 
● Physiological artifacts (respiration, cardiovascular, skin conductance, eye blinks/movements) 

○ Correction strategy*: Measure and regress out of time series 
● Motion artifacts 

○ Correction strategy*: High-pass filter, manual artifact removal 
● Electromagnetic artifacts 

○ Correction strategy: Faraday cage, active electrodes, notch filter 
● Bias for simultaneous sources: occlusion of weak or deep sources13 

○ Correction strategy*: None 
● Spurious correlations due to imperfections in head model 

○ Correction strategy: Use T1-based reconstruction (Freesurfer) 
See main text for more details 

Observational pathway 
APs → PSPs → Primary current source density → Volume conduction → Scalp potential 

Relevant inferences 
● If tests for Granger-type influence are significant, there was a directed interaction from one neural 

entity to another during visual object recognition 
● Magnitude of difference in measures derived from Granger-type model indicates the relative weight of 

the interaction between task conditions 
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Step 2: Identifying methodological properties 
 

Our observation equation specifies how neural sources map to scalp electrode recordings. 
This is also known as the forward problem and its numerical estimation results in the so-called lead 
field, mapping current sources in neural entities to electrodes. We will use the boundary element 
method (BEM)14 for this calculation, which requires an approximation of cortical geometry using 
anatomical MRI15,16. The estimation of the neural entities, summarized by current source densities, is 
known as the inverse problem. This activity in each neural entity is approximated by a vertex on the 
cortical surface. Here we will use exact low resolution brain electromagnetic tomography 
(eLORETA)12.  

Our approach entails some important assumptions: (1) the activity of a neural entity is 
reflected in electrode voltages; (2) current sources are spatially smooth; (3) the volume conduction 
model is accurate; and (4) the head model is accurate17. 

Given the target inferences defined above, our FC estimate will be Granger-type influence18,19, 
which is a directed measure that provides weighted estimates of connectivity for specific frequency 
bands. To stress the difference with what we refer to here with “causal” we deliberately omitted the 
often used, and often misinterpreted “Granger causality” name. 
 
Step 3. Identifying confounding properties 
 

EEG is highly susceptible to environmental and physiological artifacts. These include line 
noise generated by electrical circuitry, artifacts generated by ocular muscles, subject motion, 
respiration, and cardiovascular events. Several measures can be taken to address these potential 
confounds. Environmental noise can be filtered using a Faraday cage, or by using active 
electrodes20. Other sources of noise can be removed by band-pass or notch filtering approaches. 
Ocular artifacts can be measured directly via ocular electrodes or simultaneous eye tracking21.  

The eLORETA approach also has at least two major limitations that may produce imperfect 
estimates of the activity of neural entities. First, it has been found to miss sources if they are deep or 
low-amplitude, and occluded by simultaneously active superficial or higher-amplitude sources13. 
This affects spatial coverage by biasing the set of sources most likely to be attributed to a given 
pattern of scalp electrode activity. Second, this approach suffers from “leakage” between individual 
sources, resulting from a failure to sufficiently unmix the activity of neural entities signals22. 

1.3. Cross-correlation of spike trains (invasive recording) 

Here we consider a hypothetical study in which single neurons will be recorded in awake behaving 
rats (Supplementary Table 3). Interactions between neurons recorded extracellularly will be 
investigated by measuring correlations in their spiking across a range of time lags, yielding a cross-
correlation function. Despite the breadth of this topic, much of it is encompassed by the mechanistic 
FC framework described here. 
 
Step 1: Identifying target theoretical properties 
 
The original goal of cross-correlation analysis was to identify synaptic connections between neurons 
whose spike trains were simultaneously recorded23. Depending on the lag in the maximal deviation 
of the cross-correlation function and whether it is positive or negative with respect to baseline, one 
can infer either an excitatory or inhibitory synapse, its direction, and strength23–25. However, the 
massive convergence and divergence of connections in cortical circuits, and weakness of any 
particular connection between neurons, often leads to false negatives26. Instead, aggregate 
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interactions between populations of neurons (rather than single cells) will be analyzed in this study, 
which typically manifest as zero-time lag (i.e., zero-phase lag) peaks in the cross-correlation 
function27. Zero-time lag correlations are associated with numerous cognitive processes28, 
highlighting their relevance to neurocognitive function. 
         In principle, a peak in the cross-correlation function between two neurons could arise from a 
shared third afferent source29–31, as is the case with other FC measures. We will address this source 
of ambiguity using a spike-triggered joint histogram, which measures the interaction between spike 
trains from multiple neurons32, allowing us to account for the spiking of an afferent structure. Our 
target theoretical property is thus an indirect connection between recorded neurons that is not 
mediated by a third source. 
  
Step 2: Identifying methodological properties 
 
Here, spike trains from single neurons (our neural entities) will be recorded extracellularly by means 
of fine tipped electrodes, and the resulting time series will be subjected to cross-correlation analysis. 
When neurons within ~100 µm of the electrode tip fire action potentials they produce a 
transmembrane current that, via coulombs law, can be detected as a change in voltage at the 
electrode/brain interface33. If both are embedded in the same recurrently connected network they 
can synchronize their spiking. We will use a fast sampling rate (30 kHz) to capture spiking from 
individual neurons, and multichannel recordings that allow for sorting of spikes either into groups of 
multiple units or well-isolated single units. 
  
Step 3: Identifying confounding properties 
 
Because our target property is an indirect interaction not driven by a common extrinsic source, we 
have to adjust our analyses for potential confounds. To rule out comodulations driven exclusively by 
task events, there are a variety of permutation techniques available34. We will also use a jittering 
approach, with a jitter window of 1000 ms, to control for slow state dependent changes in spiking. 
Finally, when neurons have low firing rates, there is a risk that false negatives will occur, in which 
case activity may have to be sampled for a longer time26. 
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Supplementary Table 3 – Example of using standard template table to summarize an invasive spike train analysis. 
Many details are specific to this example. Also note that these properties can change over time as the field learns more 
about relevant underlying processes. 

Functional connectivity measure properties (as applied in this study) 
Cross-correlation of spike trains 

Target theoretical properties 
● Direct (monosynaptic) and indirect (polysynaptic/comodulation) 
● Directed (based on temporal lag) 
● Linear interactions 
● Weighted by interaction strength 

 
Assumptions 

● Causal interactions are due to action potentials propagated via axons influencing downstream 
spike probability 

Methodological properties 
● Equipment: Metal electrodes, AC extracellular amplifiers 
● Spatial resolution: ~100 µm 
● Spatial coverage: From local microcircuits to between brain regions 
● Temporal resolution: ~30 µs (sampling rate 30 kHz) 
● Discretization of spike trains: Spikes times are binned in steps between 100 µs and 2 ms 
● Observation equation: N/A (direct recordings) 
● Interaction estimate: Cross-correlations 
● Neural entity: Single neurons 

 
Assumptions 

● Causal link to action potentials: Extracellular waveforms reflect transmembrane currents. 
Action potentials produce sub-millisecond inward currents that appear as brief negative 
potentials on nearby recording electrodes. 

● Statistical assumptions for coincident spike counts: stationary poisson processes 
Confounding properties 

● Individual spikes recorded at the same site cannot be reliably assigned to particular neurons 
○ Correction strategy: Neurons can be better distinguished using dense multi-contact 

electrodes that allow more variation in spike waveform shape between nearby neurons 
● An absence of coincident spikes at zero time lag arises from spike waveform ‘shadowing’ 

○ Correction strategy: Use of template matching algorithm for spike detection instead of 
traditional threshold trigger, ignore deviations from the null at the zero time lag 

● Peaks in the cross-correlation arise from covariations spiking driven by state changes or 
delivery of stimuli 
○ Correction strategy: Generation of null distributions for the cross-correlation using jittering 

and permutation approaches 
See Methods for more details 

Observational pathway 
APs → extracellular fields → stereotyped waveform → coincident spike counts 

Relevant inferences 
● Given a statistically significant peak in cross-correlation function: 

Peaks that are not at zero-lag, of short duration (<~5 ms), and have low jitter arise from 
probable monosynaptic connections. The magnitude of the peak’s time lag corresponds to the 
axonal and synaptic conduction delay, while the sign of the lag is the direction of the 
interaction. 
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